How to integrate Classmarker MCP with CrewAI

Framework Integration Gradient
Classmarker Logo
CrewAI Logo
divider

Introduction

This guide walks you through connecting Classmarker to CrewAI using the Composio tool router. By the end, you'll have a working Classmarker agent that can add student to biology exam access list, create a new question for math quiz, delete user account for withdrawn student, organize new hires into onboarding group through natural language commands.

This guide will help you understand how to give your CrewAI agent real control over a Classmarker account through Composio's Classmarker MCP server.

Before we dive in, let's take a quick look at the key ideas and tools involved.

TL;DR

Here's what you'll learn:
  • Get a Composio API key and configure your Classmarker connection
  • Set up CrewAI with an MCP enabled agent
  • Create a Tool Router session or standalone MCP server for Classmarker
  • Build a conversational loop where your agent can execute Classmarker operations

What is CrewAI?

CrewAI is a powerful framework for building multi-agent AI systems. It provides primitives for defining agents with specific roles, creating tasks, and orchestrating workflows through crews.

Key features include:

  • Agent Roles: Define specialized agents with specific goals and backstories
  • Task Management: Create tasks with clear descriptions and expected outputs
  • Crew Orchestration: Combine agents and tasks into collaborative workflows
  • MCP Integration: Connect to external tools through Model Context Protocol

What is the Classmarker MCP server, and what's possible with it?

The Classmarker MCP server is an implementation of the Model Context Protocol that connects your AI agent and assistants like Claude, Cursor, etc directly to your Classmarker account. It provides structured and secure access to your quiz management tools, so your agent can create tests, manage users and groups, add questions, and control access codes—without manual intervention.

  • Automated user and group management: Let your agent create new users, add them to groups, or delete users and groups for streamlined participant organization.
  • Dynamic question and category creation: Instruct your agent to add new questions or categories to your exams, helping you build tests faster and keep content organized.
  • Access code and permissions control: Enable your agent to generate, assign, or delete access codes for specific exams, giving or revoking test access instantly as needed.
  • Test link and API key management: Allow your agent to manage test links or revoke API keys to maintain secure and up-to-date exam distribution.
  • Efficient data cleanup: Ask your agent to remove users, groups, test links, or access codes, keeping your Classmarker account tidy and up to date with minimal effort.

Supported Tools & Triggers

Tools
Create Access List ItemTool to add one or more access codes to an access list.
Create a new question categoryTool to create a new question category.
Create GroupTool to create a new group.
Create QuestionTool to create a new question with specified text, type, and category.
Create ClassMarker UserTool to create a new user in ClassMarker.
Delete Access List ItemTool to delete one or more codes from an access list.
Delete API KeyTool to delete an API key by its ID.
Delete GroupTool to delete a group by its ID.
Delete Test LinkTool to delete a specific test link.
Delete UserTool to delete a specific user by ID.
Delete WebhookTool to delete a specific webhook listener.
Get All Groups, Links, and ExamsTool to retrieve all available groups, links, and their exams.
Get Group DetailsTool to retrieve detailed information about a specific group.
Get Initial Finished After TimestampTool to compute the initial finishedAfter timestamp.
Get QuestionTool to retrieve a specific question by its ID.
Get Recent Results For Group ExamTool to fetch recent test results for a specific group and exam.
Get Recent Results Link ExamTool to fetch recent results for a specific link and exam.
Get Test DetailsTool to retrieve detailed information for a specific test.
Get User DetailsTool to retrieve detailed information about a specific user.
List AssignmentsTool to list all assignments.
List Question CategoriesTool to retrieve all question categories.
List CertificatesTool to list all certificates.
List GroupsTool to list all groups in your ClassMarker account.
List QuestionsTool to list all questions.
List Recent Results For GroupsTool to retrieve recent exam results for all groups.
List Recent Results for LinksTool to retrieve recent exam results for all links.
List TestsTool to list all available tests.
List UsersTool to list all users.
List WebhooksTool to retrieve all configured webhooks.
Update Sub-CategoryTool to update an existing sub-category.
Update an existing parent categoryTool to update an existing parent category.
Update QuestionTool to update an existing question in the question bank.

What is the Composio tool router, and how does it fit here?

What is Tool Router?

Composio's Tool Router helps agents find the right tools for a task at runtime. You can plug in multiple toolkits (like Gmail, HubSpot, and GitHub), and the agent will identify the relevant app and action to complete multi-step workflows. This can reduce token usage and improve the reliability of tool calls. Read more here: Getting started with Tool Router

The tool router generates a secure MCP URL that your agents can access to perform actions.

How the Tool Router works

The Tool Router follows a three-phase workflow:

  1. Discovery: Searches for tools matching your task and returns relevant toolkits with their details.
  2. Authentication: Checks for active connections. If missing, creates an auth config and returns a connection URL via Auth Link.
  3. Execution: Executes the action using the authenticated connection.

Step-by-step Guide

Prerequisites

Before starting, make sure you have:
  • Python 3.9 or higher
  • A Composio account and API key
  • A Classmarker connection authorized in Composio
  • An OpenAI API key for the CrewAI LLM
  • Basic familiarity with Python

Getting API Keys for OpenAI and Composio

OpenAI API Key
  • Go to the OpenAI dashboard and create an API key. You'll need credits to use the models, or you can connect to another model provider.
  • Keep the API key safe.
Composio API Key
  • Log in to the Composio dashboard.
  • Navigate to your API settings and generate a new API key.
  • Store this key securely as you'll need it for authentication.

Install dependencies

bash
pip install composio crewai crewai-tools python-dotenv
What's happening:
  • composio connects your agent to Classmarker via MCP
  • crewai provides Agent, Task, Crew, and LLM primitives
  • crewai-tools includes MCP helpers
  • python-dotenv loads environment variables from .env

Set up environment variables

bash
COMPOSIO_API_KEY=your_composio_api_key_here
USER_ID=your_user_id_here
OPENAI_API_KEY=your_openai_api_key_here

Create a .env file in your project root.

What's happening:

  • COMPOSIO_API_KEY authenticates with Composio
  • USER_ID scopes the session to your account
  • OPENAI_API_KEY lets CrewAI use your chosen OpenAI model

Import dependencies

python
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional import if you plan to adapt tools
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()
What's happening:
  • CrewAI classes define agents and tasks, and run the workflow
  • MCPServerHTTP connects the agent to an MCP endpoint
  • Composio will give you a short lived Classmarker MCP URL

Create a Composio Tool Router session for Classmarker

python
composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
session = composio.create(
    user_id=os.getenv("USER_ID"),
    toolkits=["classmarker"],
)
url = session.mcp.url
What's happening:
  • You create a Classmarker only session through Composio
  • Composio returns an MCP HTTP URL that exposes Classmarker tools

Configure the LLM

python
llm = LLM(
    model="gpt-5-mini",
    api_key=os.getenv("OPENAI_API_KEY"),
)
What's happening:
  • CrewAI will call this LLM for planning and responses
  • You can swap in a different model if needed

Attach the MCP server and create the agent

python
toolkit_agent = Agent(
    role="Classmarker Assistant",
    goal="Help users interact with Classmarker through natural language commands",
    backstory=(
        "You are an expert assistant with access to Classmarker tools. "
        "You can perform various Classmarker operations on behalf of the user."
    ),
    mcps=[
        MCPServerHTTP(
            url=url,
            streamable=True,
            cache_tools_list=True,
            headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
        ),
    ],
    llm=llm,
    verbose=True,
    max_iter=10,
)
What's happening:
  • MCPServerHTTP connects the agent to the Classmarker MCP endpoint
  • cache_tools_list saves a tools catalog for faster subsequent runs
  • verbose helps you see what the agent is doing

Add a REPL loop with Task and Crew

python
print("Chat started! Type 'exit' or 'quit' to end.\n")
print("Try asking the agent to perform Classmarker operations.\n")

conversation_context = ""

while True:
    user_input = input("You: ").strip()

    if user_input.lower() in ["exit", "quit", "bye"]:
        print("\nGoodbye!")
        break

    if not user_input:
        continue

    conversation_context += f"\nUser: {user_input}\n"
    print("\nAgent is thinking...\n")

    task = Task(
        description=(
            f"Based on the conversation history:\n{conversation_context}\n\n"
            f"Current user request: {user_input}\n\n"
            f"Please help the user with their Classmarker related request."
        ),
        expected_output="A helpful response addressing the user's request",
        agent=toolkit_agent,
    )

    crew = Crew(
        agents=[toolkit_agent],
        tasks=[task],
        verbose=False,
    )

    result = crew.kickoff()
    response = str(result)

    conversation_context += f"Agent: {response}\n"
    print(f"Agent: {response}\n")
What's happening:
  • You build a simple chat loop and keep a running context
  • Each user turn becomes a Task handled by the same agent
  • Crew executes the task and returns a response

Run the application

python
if __name__ == "__main__":
    main()
What's happening:
  • Standard Python entry point so you can run python crewai_classmarker_agent.py

Complete Code

Here's the complete code to get you started with Classmarker and CrewAI:

python
# file: crewai_classmarker_agent.py
from crewai import Agent, Task, Crew, LLM
from crewai_tools import MCPServerAdapter  # optional
from composio import Composio
from dotenv import load_dotenv
import os
from crewai.mcp import MCPServerHTTP

load_dotenv()

def main():
    # Initialize Composio and create a Classmarker session
    composio = Composio(api_key=os.getenv("COMPOSIO_API_KEY"))
    session = composio.create(
        user_id=os.getenv("USER_ID"),
        toolkits=["classmarker"],
    )
    url = session.mcp.url

    # Configure LLM
    llm = LLM(
        model="gpt-5-mini",
        api_key=os.getenv("OPENAI_API_KEY"),
    )

    # Create Classmarker assistant agent
    toolkit_agent = Agent(
        role="Classmarker Assistant",
        goal="Help users interact with Classmarker through natural language commands",
        backstory=(
            "You are an expert assistant with access to Classmarker tools. "
            "You can perform various Classmarker operations on behalf of the user."
        ),
        mcps=[
            MCPServerHTTP(
                url=url,
                streamable=True,
                cache_tools_list=True,
                headers={"x-api-key": os.getenv("COMPOSIO_API_KEY")},
            ),
        ],
        llm=llm,
        verbose=True,
        max_iter=10,
    )

    print("Chat started! Type 'exit' or 'quit' to end the conversation.\n")
    print("Try asking the agent to perform Classmarker operations.\n")

    conversation_context = ""

    while True:
        user_input = input("You: ").strip()

        if user_input.lower() in ["exit", "quit", "bye"]:
            print("\nGoodbye!")
            break

        if not user_input:
            continue

        conversation_context += f"\nUser: {user_input}\n"
        print("\nAgent is thinking...\n")

        task = Task(
            description=(
                f"Based on the conversation history:\n{conversation_context}\n\n"
                f"Current user request: {user_input}\n\n"
                f"Please help the user with their Classmarker related request."
            ),
            expected_output="A helpful response addressing the user's request",
            agent=toolkit_agent,
        )

        crew = Crew(
            agents=[toolkit_agent],
            tasks=[task],
            verbose=False,
        )

        result = crew.kickoff()
        response = str(result)

        conversation_context += f"Agent: {response}\n"
        print(f"Agent: {response}\n")

if __name__ == "__main__":
    main()

Conclusion

You now have a CrewAI agent connected to Classmarker through Composio's Tool Router. The agent can perform Classmarker operations through natural language commands. Next steps:
  • Add role-specific instructions to customize agent behavior
  • Plug in more toolkits for multi-app workflows
  • Chain tasks for complex multi-step operations

How to build Classmarker MCP Agent with another framework

FAQ

What are the differences in Tool Router MCP and Classmarker MCP?

With a standalone Classmarker MCP server, the agents and LLMs can only access a fixed set of Classmarker tools tied to that server. However, with the Composio Tool Router, agents can dynamically load tools from Classmarker and many other apps based on the task at hand, all through a single MCP endpoint.

Can I use Tool Router MCP with CrewAI?

Yes, you can. CrewAI fully supports MCP integration. You get structured tool calling, message history handling, and model orchestration while Tool Router takes care of discovering and serving the right Classmarker tools.

Can I manage the permissions and scopes for Classmarker while using Tool Router?

Yes, absolutely. You can configure which Classmarker scopes and actions are allowed when connecting your account to Composio. You can also bring your own OAuth credentials or API configuration so you keep full control over what the agent can do.

How safe is my data with Composio Tool Router?

All sensitive data such as tokens, keys, and configuration is fully encrypted at rest and in transit. Composio is SOC 2 Type 2 compliant and follows strict security practices so your Classmarker data and credentials are handled as safely as possible.

Used by agents from

Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai
Context
ASU
Letta
glean
HubSpot
Agent.ai
Altera
DataStax
Entelligence
Rolai

Never worry about agent reliability

We handle tool reliability, observability, and security so you never have to second-guess an agent action.